Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(32): 11903-11912, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506302

RESUMO

For the past few years, short-lived unsaturated halocarbons have been marketed as environmentally friendly replacements for long-lived halogenated greenhouse gases and ozone-depleting substances. The phase-in of unsaturated halocarbons for various applications, such as refrigeration and foam blowing, can be tracked by their emergence and increase in the atmosphere. We present the first atmospheric measurements of the hydrofluoroolefin (HFO) HFO-1336mzz(Z) ((Z)-1,1,1,4,4,4-hexafluoro-2-butene, cis-CF3CH═CHCF3), a newly used unsaturated hydrofluorocarbon. HFO-1336mzz(Z) has been detected in >90% of all measurements since 2018 during multi-month campaigns at three Swiss and one Dutch location. Since 2019, it is found in ∼30% of all measurements that run continuously at the Swiss high-altitude Jungfraujoch station. During pollution events, mole fractions of up to ∼10 ppt were observed. Based on our measurements, Swiss and Dutch emissions were estimated at 2-7 Mg yr-1 (2019-2021) and 30 Mg yr-1 (2022), respectively. Modeled spatial emission distributions only partly conform to population density in both countries. Monitoring the presence of new unsaturated halocarbons in the atmosphere is crucial since long-term effects of their degradation products are still debated. Furthermore, the production of HFOs involves climate-active substances, which may leak to the atmosphere─in the case of HFO-1336mzz(Z), for example, the ozone-depleting CFC-113a (CF3CCl3).


Assuntos
Gases de Efeito Estufa , Hidrocarbonetos Halogenados , Ozônio , Hidrocarbonetos Halogenados/análise , Monitoramento Ambiental , Atmosfera
2.
J Cheminform ; 13(1): 78, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34607604

RESUMO

BACKGROUND: Non-target screening consists in searching a sample for all present substances, suspected or unknown, with very little prior knowledge about the sample. This approach has been introduced more than a decade ago in the field of water analysis, together with dedicated compound identification tools, but is still very scarce for indoor and atmospheric trace gas measurements, despite the clear need for a better understanding of the atmospheric trace gas composition. For a systematic detection of emerging trace gases in the atmosphere, a new and powerful analytical method is gas chromatography (GC) of preconcentrated samples, followed by electron ionisation, high resolution mass spectrometry (EI-HRMS). In this work, we present data analysis tools to enable automated fragment formula annotation for unknown compounds measured by GC-EI-HRMS. RESULTS: Based on co-eluting mass/charge fragments, we developed an innovative data analysis method to reliably reconstruct the chemical formulae of the fragments, using efficient combinatorics and graph theory. The method does not require the presence of the molecular ion, which is absent in [Formula: see text]40% of EI spectra. Our method has been trained and validated on >50 halocarbons and hydrocarbons, with 3-20 atoms and molar masses of 30-330 g mol[Formula: see text], measured with a mass resolution of approx. 3500. For >90% of the compounds, more than 90% of the annotated fragment formulae are correct. Cases of wrong identification can be attributed to the scarcity of detected fragments per compound or the lack of isotopic constraint (no minor isotopocule detected). CONCLUSIONS: Our method enables to reconstruct most probable chemical formulae independently from spectral databases. Therefore, it demonstrates the suitability of EI-HRMS data for non-target analysis and paves the way for the identification of substances for which no EI mass spectrum is registered in databases. We illustrate the performances of our method for atmospheric trace gases and suggest that it may be well suited for many other types of samples. The L-GPL licenced Python code is released under the name ALPINAC for ALgorithmic Process for Identification of Non-targeted Atmospheric Compounds.

3.
Nature ; 590(7846): 433-437, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568814

RESUMO

Emissions of ozone-depleting substances, including trichlorofluoromethane (CFC-11), have decreased since the mid-1980s in response to the Montreal Protocol1,2. In recent years, an unexpected increase in CFC-11 emissions beginning in 2013 has been reported, with much of the global rise attributed to emissions from eastern China3,4. Here we use high-frequency atmospheric mole fraction observations from Gosan, South Korea and Hateruma, Japan, together with atmospheric chemical transport-model simulations, to investigate regional CFC-11 emissions from eastern China. We find that CFC-11 emissions returned to pre-2013 levels in 2019 (5.0 ± 1.0 gigagrams per year in 2019, compared to 7.2 ± 1.5 gigagrams per year for 2008-2012, ±1 standard deviation), decreasing by 10 ± 3 gigagrams per year since 2014-2017. Furthermore, we find that in this region, carbon tetrachloride (CCl4) and dichlorodifluoromethane (CFC-12) emissions-potentially associated with CFC-11 production-were higher than expected after 2013 and then declined one to two years before the CFC-11 emissions reduction. This suggests that CFC-11 production occurred in eastern China after the mandated global phase-out, and that there was a subsequent decline in production during 2017-2018. We estimate that the amount of the CFC-11 bank (the amount of CFC-11 produced, but not yet emitted) in eastern China is up to 112 gigagrams larger in 2019 compared to pre-2013 levels, probably as a result of recent production. Nevertheless, it seems that any substantial delay in ozone-layer recovery has been avoided, perhaps owing to timely reporting3,4 and subsequent action by industry and government in China5,6.

4.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495345

RESUMO

Global and regional atmospheric measurements and modeling can play key roles in discovering and quantifying unexpected nascent emissions of environmentally important substances. We focus here on three hydrochlorofluorocarbons (HCFCs) that are restricted by the Montreal Protocol because of their roles in stratospheric ozone depletion. Based on measurements of archived air samples and on in situ measurements at stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, we report global abundances, trends, and regional enhancements for HCFC-132b ([Formula: see text]), which is newly discovered in the atmosphere, and updated results for HCFC-133a ([Formula: see text]) and HCFC-31 ([Formula: see text]ClF). No purposeful end-use is known for any of these compounds. We find that HCFC-132b appeared in the atmosphere 20 y ago and that its global emissions increased to 1.1 Gg⋅y-1 by 2019. Regional top-down emission estimates for East Asia, based on high-frequency measurements for 2016-2019, account for ∼95% of the global HCFC-132b emissions and for ∼80% of the global HCFC-133a emissions of 2.3 Gg⋅y-1 during this period. Global emissions of HCFC-31 for the same period are 0.71 Gg⋅y-1 Small European emissions of HCFC-132b and HCFC-133a, found in southeastern France, ceased in early 2017 when a fluorocarbon production facility in that area closed. Although unreported emissive end-uses cannot be ruled out, all three compounds are most likely emitted as intermediate by-products in chemical production pathways. Identification of harmful emissions to the atmosphere at an early stage can guide the effective development of global and regional environmental policy.

5.
Chimia (Aarau) ; 74(3): 136-141, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32197671

RESUMO

CFCs (chlorofluorocarbons) and other strong ozone-depleting halogenated organic trace gases were used in numerous industrial, household and agriculture applications. First atmospheric measurements of CFCs were performed in the 1970s, well ahead of the detection of the ozone hole in the 1980s. The continuous observation of these ozone-depleting substances (ODSs) is crucial for monitoring their global ban within the Montreal Protocol. In addition, also HFCs (fluorinated hydrocarbons) are measured, which were introduced as substitutes of ODSs and are potent greenhouse gases. Since 2000, Empa continuously measures more than 50 halogenated trace gases at the high-Alpine station of Jungfraujoch (3850 m asl) as part of the global AGAGE network (Advanced Global Atmospheric Gases Experiment). Jungfraujoch is the highest location worldwide where such measurements are performed, and the site where several of these compounds were measured in the atmosphere for the first time. The measurements at Jungfraujoch and at other globally well-positioned sites serve as an early warning system, i. e. before potentially harmful halogenated organic substances can accumulate and detrimentally affect the natural environment.

6.
J Geophys Res Atmos ; 124(4): 2318-2335, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30984484

RESUMO

Very short-lived substances (VSLS), including dichloromethane (CH2Cl2), chloroform (CHCl3), perchloroethylene (C2Cl4), and 1,2-dichloroethane (C2H4Cl2), are a stratospheric chlorine source and therefore contribute to ozone depletion. We quantify stratospheric chlorine trends from these VSLS (VSLCltot) using a chemical transport model and atmospheric measurements, including novel high-altitude aircraft data from the NASA VIRGAS (2015) and POSIDON (2016) missions. We estimate VSLCltot increased from 69 (±14) parts per trillion (ppt) Cl in 2000 to 111 (±22) ppt Cl in 2017, with >80% delivered to the stratosphere through source gas injection, and the remainder from product gases. The modeled evolution of chlorine source gas injection agrees well with historical aircraft data, which corroborate reported surface CH2Cl2 increases since the mid-2000s. The relative contribution of VSLS to total stratospheric chlorine increased from ~2% in 2000 to ~3.4% in 2017, reflecting both VSLS growth and decreases in long-lived halocarbons. We derive a mean VSLCltot growth rate of 3.8 (±0.3) ppt Cl/year between 2004 and 2017, though year-to-year growth rates are variable and were small or negative in the period 2015-2017. Whether this is a transient effect, or longer-term stabilization, requires monitoring. In the upper stratosphere, the modeled rate of HCl decline (2004-2017) is -5.2% per decade with VSLS included, in good agreement to ACE satellite data (-4.8% per decade), and 15% slower than a model simulation without VSLS. Thus, VSLS have offset a portion of stratospheric chlorine reductions since the mid-2000s.

7.
Proc Natl Acad Sci U S A ; 112(19): 5927-31, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918401

RESUMO

We infer global and regional emissions of five of the most abundant hydrofluorocarbons (HFCs) using atmospheric measurements from the Advanced Global Atmospheric Gases Experiment and the National Institute for Environmental Studies, Japan, networks. We find that the total CO2-equivalent emissions of the five HFCs from countries that are required to provide detailed, annual reports to the United Nations Framework Convention on Climate Change (UNFCCC) increased from 198 (175-221) Tg-CO2-eq ⋅ y(-1) in 2007 to 275 (246-304) Tg-CO2-eq ⋅ y(-1) in 2012. These global warming potential-weighted aggregated emissions agree well with those reported to the UNFCCC throughout this period and indicate that the gap between reported emissions and global HFC emissions derived from atmospheric trends is almost entirely due to emissions from nonreporting countries. However, our measurement-based estimates of individual HFC species suggest that emissions, from reporting countries, of the most abundant HFC, HFC-134a, were only 79% (63-95%) of the UNFCCC inventory total, while other HFC emissions were significantly greater than the reported values. These results suggest that there are inaccuracies in the reporting methods for individual HFCs, which appear to cancel when aggregated together.

8.
Environ Sci Technol ; 49(5): 2703-8, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25625175

RESUMO

Halogenated alkenes are a class of anthropogenic substances, which replace ozone-depleting substances and long-lived greenhouse gases in the foam-blowing, refrigeration, and solvent sectors. We report the first multiyear atmospheric measurements of the hydrofluorocarbons HFC-1234yf (2,3,3,3-tetrafluoroprop-1-ene, CF3CF═CH2), and HFC-1234ze(E) (E-1,3,3,3-tetrafluoroprop-1-ene trans-CF3CH═CHF), and the hydrochlorofluorocarbon HCFC-1233zd(E) (E-1-chloro-3,3,3-trifluoroprop-1-ene trans-CF3CH═CHCl) from the high altitude observatory at Jungfraujoch and from urban Dubendorf (Switzerland). When observations started in 2011 HFC-1234yf was undetectable at Jungfraujoch (mole fractions <0.003 ppt, parts-per-trillion, 10(-12)) but since then the percentage of measurements with detectable mole fractions has steadily increased to 4.5% in 2014. By contrast, in 2014 HFC-1234ze(E) was detectable in half of our samples at Jungfraujoch and in all samples at Dubendorf demonstrating the wide use of this compound within the air mass footprints of the stations. Our back trajectory analysis for the Jungfraujoch observations suggests high emission strength of HFC-1234ze(E) in the Belgium/Netherlands region. HCFC-1233zd(E) is present at very low mole fractions (typically <0.03 ppt) at both stations, and features pronounced seasonality and a general absence of pollution events during our 2013-2014 measurements. This is indicative of the presence of significant emissions from source locations outside the footprints of the two stations. Based on a simple one-box model calculation we estimate globally increasing HCFC-1233zd(E) emissions from 0.2 Gg yr(-1) in 2013 to 0.5 Gg yr(-1) for 2014.


Assuntos
Poluentes Atmosféricos/análise , Gases/análise , Hidrocarbonetos Halogenados/análise , Bélgica , Monitoramento Ambiental , Modelos Teóricos , Países Baixos , Suíça
9.
Artigo em Inglês | MEDLINE | ID: mdl-26753167

RESUMO

The growing awareness of climate change/global warming, and continuing concerns regarding stratospheric ozone depletion, will require continued measurements and standards for many compounds, in particular halocarbons that are linked to these issues. In order to track atmospheric mole fractions and assess the impact of policy on emission rates, it is necessary to demonstrate measurement equivalence at the highest levels of accuracy for assigned values of standards. Precise measurements of these species aid in determining small changes in their atmospheric abundance. A common source of standards/scales and/or well-documented agreement of different scales used to calibrate the measurement instrumentation are key to understanding many sets of data reported by researchers. This report describes the results of a comparison study among National Metrology Institutes and atmospheric research laboratories for the chlorofluorocarbons (CFCs) dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and 1,1,2-trichlorotrifluoroethane (CFC-113); the hydrochlorofluorocarbons (HCFCs) chlorodifluoromethane (HCFC-22) and 1-chloro-1,1-difluoroethane (HCFC-142b); and the hydrofluorocarbon (HFC) 1,1,1,2-tetrafluoroethane (HFC-134a), all in a dried whole air sample. The objective of this study is to compare calibration standards/scales and the measurement capabilities of the participants for these halocarbons at trace atmospheric levels. The results of this study show agreement among four independent calibration scales to better than 2.5% in almost all cases, with many of the reported agreements being better than 1.0%.

11.
Environ Sci Technol ; 46(3): 1650-8, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22225403

RESUMO

HFC-1234yf (2,3,3,3-tetrafluoropropene) is under discussion for replacing HFC-134a (1,1,1,2-tetrafluoroethane) as a cooling agent in mobile air conditioners (MACs) in the European vehicle fleet. Some HFC-1234yf will be released into the atmosphere, where it is almost completely transformed to the persistent trifluoroacetic acid (TFA). Future emissions of HFC-1234yf after a complete conversion of the European vehicle fleet were assessed. Taking current day leakage rates and predicted vehicle numbers for the year 2020 into account, European total HFC-1234yf emissions from MACs were predicted to range between 11.0 and 19.2 Gg yr(-1). Resulting TFA deposition rates and rainwater concentrations over Europe were assessed with two Lagrangian chemistry transport models. Mean European summer-time TFA mixing ratios of about 0.15 ppt (high emission scenario) will surpass previously measured levels in background air in Germany and Switzerland by more than a factor of 10. Mean deposition rates (wet + dry) of TFA were estimated to be 0.65-0.76 kg km(-2) yr(-1), with a maxium of ∼2.0 kg km(-2) yr(-1) occurring in Northern Italy. About 30-40% of the European HFC-1234yf emissions were deposited as TFA within Europe, while the remaining fraction was exported toward the Atlantic Ocean, Central Asia, Northern, and Tropical Africa. Largest annual mean TFA concentrations in rainwater were simulated over the Mediterranean and Northern Africa, reaching up to 2500 ng L(-1), while maxima over the continent of about 2000 ng L(-1) occurred in the Czech Republic and Southern Germany. These highest annual mean concentrations are at least 60 times lower than previously determined to be a safe level for the most sensitive aquatic life-forms. Rainwater concentrations during individual rain events would still be 1 order of magnitude lower than the no effect level. To verify these results future occasional sampling of TFA in the atmospheric environment should be considered. If future HFC-1234yf emissions surpass amounts used here studies of TFA accumulation in endorheic basins and other sensitive areas should be aspired.


Assuntos
Ar Condicionado , Movimentos do Ar , Poluentes Atmosféricos/análise , Atmosfera/química , Fluorocarbonos/química , Modelos Teóricos , Veículos Automotores , Europa (Continente) , Previsões , Geografia , Chuva , Ácido Trifluoracético/química
12.
Environ Sci Technol ; 46(1): 217-25, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22192076

RESUMO

European emissions of nine representative halocarbons (CFC-11, CFC-12, Halon 1211, HCFC-141b, HCFC-142b, HCFC-22, HFC-125, HFC-134a, HFC-152a) are derived for the year 2009 by combining long-term observations in Switzerland, Italy, and Ireland with campaign measurements from Hungary. For the first time, halocarbon emissions over Eastern Europe are assessed by top-down methods, and these results are compared to Western European emissions. The employed inversion method builds on least-squares optimization linking atmospheric observations with calculations from the Lagrangian particle dispersion model FLEXPART. The aggregated halocarbon emissions over the study area are estimated at 125 (106-150) Tg of CO(2) equiv/y, of which the hydrofluorocarbons (HFCs) make up the most important fraction with 41% (31-52%). We find that chlorofluorocarbon (CFC) emissions from banks are still significant and account for 35% (27-43%) of total halocarbon emissions in Europe. The regional differences in per capita emissions are only small for the HFCs, while emissions of CFCs and hydrochlorofluorocarbons (HCFCs) tend to be higher in Western Europe compared to Eastern Europe. In total, the inferred per capita emissions are similar to estimates for China, but 3.5 (2.3-4.5) times lower than for the United States. Our study demonstrates the large benefits of adding a strategically well placed measurement site to the existing European observation network of halocarbons, as it extends the coverage of the inversion domain toward Eastern Europe and helps to better constrain the emissions over Central Europe.


Assuntos
Atmosfera/química , Monitoramento Ambiental , Gases/análise , Efeito Estufa , Hidrocarbonetos Halogenados/análise , Europa (Continente)
13.
Environ Sci Technol ; 43(13): 4791-5, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19673266

RESUMO

The aromatic hydrocarbons benzene, toluene and C2-benzenes (ethyl benzene and m,p,o-xylene) (BTEX) were measured during a 2-month monitoring campaign in 2007 in the Arctic town of Longyearbyen (Spitsbergen, Svalbard). Reflecting the remoteness of the location, very low mixing ratios were observed during night and in windy conditions. In late spring (April-May), however, the high frequency of guided snowmobile tours resulted in "rush-hour" maximum values of more than 10 ppb of BTEX. These concentration levels are comparable to those in European towns and are caused predominately by the outdated 2-stroke engines, which are still used by approximately 30% of the snowmobiles in Longyearbyen. During summer, peak events were about a factor of 100 lower compared to those during the snowmobile season. Emissions in summer were mainly caused by diesel-fueled heavy duty vehicles (HDVs), permanently used for coal transport from the adjacent coal mines. The documented high BTEX mixing ratios from snowmobiles in the Arctic provide an obvious incentive to change the regulation practice to a cleaner engine technology.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Derivados de Benzeno/análise , Benzeno/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos Aromáticos/análise , Tolueno/análise , Emissões de Veículos , Xilenos/análise , Regiões Árticas , Poluentes Ambientais/análise , Noruega , Veículos Off-Road , Estações do Ano , Tempo (Meteorologia)
14.
Environ Sci Technol ; 41(20): 7060-6, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17993148

RESUMO

Eighteen oxygenated volatile organic compounds (OVOCs) and eight nonmethane hydrocarbons (NMHCs) were measured continuously during a two-week campaign in 2004 in the Gubrist highway tunnel (Switzerland). The study aimed to estimate selected OVOC and NMHC emissions of the current vehicle fleet under highway conditions. For the measured OVOCs the highest EFs were found for ethanol (9.7 mg/km), isopropanol (3.2 mg/km), and acetaldehyde (2.5 mg/km), followed by acetone, benzaldehyde, and acrolein. Formaldehyde, the most abundant OVOC measured in other studies, was not measured by the method applied. Relative emissions of the measured OVOCs were estimated to contribute approximately 6 and 4% to the total road traffic VOC emissions from Switzerland and Europe, respectively. Results are compared with those from previous studies from the same tunnel performed in 1993 and 2002, and from campaigns in other tunnels. A continuous reduction in the emission factors (EFs) was determined for all measured compounds from 1993 until 2004. The relative contributions of light-duty vehicles (LDV) and heavy-duty vehicles (HDV) to the total emissions indicated that OVOCs were mainly produced by the HDVs, whereas LDVs dominated the production of the NMHCs.


Assuntos
Hidrocarbonetos/análise , Compostos Orgânicos/análise , Meios de Transporte , Emissões de Veículos , Suíça , Volatilização
15.
Environ Sci Technol ; 41(4): 1145-51, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17593712

RESUMO

HFC-365mfc (1,1,1,3,3-pentafluorobutane) is an industrial chemical used for polyurethane foam blowing. From early 2003, HFC-365mfc has been commercially produced as a substitute for HCFC-141b, whose use in Europe has been banned since January 2004. We describe the first detection of HFC-365mfc in the atmosphere and report on a 2 year long record at the high Alpine station of Jungfraujoch (Switzerland) and the Atlantic coast station of Mace Head (Ireland). The measurements at Jungfraujoch are used to estimate the central European emissions of HFC-365mfc, HCFC-141b, and CFC-11. For HFC-365mfc, we estimate the central European emissions (Germany, France, Italy, Switzerland, The Netherlands, Belgium, and Luxembourg) in 2003 and 2004 as 400-500 tonnes year(-1). These emissions are about one-third lower on a per capita basis than what we estimate from the Mace Head measurements for the total of Europe. The estimated emissions of HCFC-141b for central Europe are higher (i.e., 7.2-3.5 ktonnes year(-1)) with a decreasing trend in the period from 2000 to 2004. Residual emissions of CFC-11 are estimated at 2.4-4.7 ktonnes year(-1) in the same time period. The Po Valley (northern Italy) appears to be a main source region for HFC-365mfc and for the former blowing agents HCFC-141b and CFC-11. In 2004, the emissions of HFC-365mfc arose from a wider region of Europe, which we attribute to an increased penetration of HFC-365mfc into the European market.


Assuntos
Poluentes Atmosféricos/análise , Clorofluorcarbonetos de Metano/análise , Clorofluorcarbonetos/análise , Hidrocarbonetos Fluorados/análise , Etano Clorofluorcarbonos , Monitoramento Ambiental , Europa (Continente) , Polímeros
16.
Nature ; 433(7025): 506-8, 2005 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-15690037

RESUMO

Methyl chloroform (CH3CCl3, 1,1,1,-trichloroethane) was used widely as a solvent before it was recognized to be an ozone-depleting substance and its phase-out was introduced under the Montreal Protocol. Subsequently, its atmospheric concentration has declined steadily and recent European methyl chloroform consumption and emissions were estimated to be less than 0.1 gigagrams per year. However, data from a short-term tropospheric measurement campaign (EXPORT) indicated that European methyl chloroform emissions could have been over 20 gigagrams in 2000 (ref. 6), almost doubling previously estimated global emissions. Such enhanced emissions would significantly affect results from the CH3CC13 method of deriving global abundances of hydroxyl radicals (OH) (refs 7-12)-the dominant reactive atmospheric chemical for removing trace gases related to air pollution, ozone depletion and the greenhouse effect. Here we use long-term, high-frequency data from Mace Head, Ireland and Jungfraujoch, Switzerland, to infer European methyl chloroform emissions. We find that European emission estimates declined from about 60 gigagrams per year in the mid-1990s to 0.3-1.4 and 1.9-3.4 gigagrams per year in 2000-03, based on Mace Head and Jungfraujoch data, respectively. Our European methyl chloroform emission estimates are therefore higher than calculated from consumption data, but are considerably lower than those derived from the EXPORT campaign in 2000 (ref. 6).


Assuntos
Atmosfera/química , Poluentes Ambientais/análise , Tricloroetanos/análise , Europa (Continente) , Cooperação Internacional , Fatores de Tempo , Tricloroetanos/química
17.
Environ Sci Technol ; 38(7): 1998-2004, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15112799

RESUMO

This study presents the quantification of the emissions of the refrigerants CFC-12 (CCl2F2), HCFC-22 (CHClF2), and HFC-134a (CF3CH2F) from road traffic in Switzerland. These gases are used as refrigerants in car air conditioning systems (A/C-systems) and in cool aggregates for refrigeration transport. All three substances act as greenhouse gases, and CFC-12 and HCFC-22 are in addition stratospheric ozone depleting chemicals. The measurements have been performed in a highway tunnel in the area of Zürich and cover a large number of individual vehicles, which are thought to be representative of a typical European car fleet. The average emission rates per vehicle were found to be 1.0 +/- 0.2 mg h(-1) for CFC-12, 0.6 +/- 0.4 mg h(-1) for HCFC-22, and 6.2 +/- 0.8 mg h(-1) for HFC-134a. These emission factors have been measured for driving vehicles and represent an average emission rate for all types of vehicles regardless of whether they are equipped with an A/C-unit or not. For an average vehicle equipped with an A/C-unit, these results translate into losses of about 14 mg h(-1) for HFC-134a and 20-30 mg h(-1) for CFC-12, when the estimated distribution of HFC-134a-A/C-units (45%) and CFC-12-A/C-units (3-5%) in the car fleet were taken into account. The emissions of CFC-12 and HFC-134a were mainly attributed to the losses from A/C-systems of passenger cars, whereas the emissions of HCFC-22 originate from losses of refrigeration systems of transport trucks. The observed emissions are discussed in respect to their environmental impact and compared to the overall greenhouse gas emissions of road traffic.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Fluorados/análise , Veículos Automotores , Monitoramento Ambiental , Refrigeração , Suíça , Emissões de Veículos/análise
18.
Neural Netw ; 11(4): 611-621, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12662800

RESUMO

In this paper, we consider the problem of how to construct an artificial neuronal network such that it reproduces a given set of patterns in an exact manner. It turns out that the structure of the weight matrix of the network represents the structure of the set of patterns it is acting on, not the patterns themselves. Conditions are discussed under which the associative network memorizes a certain subset of these patterns. Our formal approach is based on the simple observation that neural networks are structured sets of neurons. By regarding recurrent neural networks as dynamical systems with symmetry, the category of G-sets and G-morphisms appears as a natural framework for evaluating their structure and functioning analytically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...